Artificial Intelligence Principles and Techniques
Improved Time Series Decline Curve Analysis For Oil
Production Using Recurrent Neural Network

Cédric Fracés Gasmi*!, Ouassim Khebzegga'!, and Soheil Esmaeilzadeht!

Stanford University, CA 94305, USA

Abstract

In this work, we provide a more accurate alter-
native to Decline Curve Analysis (DCA), one of
the most prevalent forecasting techniques used in
the oil & gas industry. DCA largely relies upon
non-linear regression where a hyperbolic function is
fitted through historical data to predict the future
production. We propose a data-driven approach
that utilizes both the most recent portion of a time
series and a set of heuristic to improve upon the
current benchmark. Given the time series of pro-
duction history and a set of contextual meta data
(e.g. well location, field’s geological information,
operations, etc.) we forecast the hydrocarbon pro-
duction of a given well. We show how regression
and clustering techniques can be combined to im-
prove prediction accuracy. We use different sequen-
tial neural networks with domain informed feature
engineering and enhance the accuracy of the fore-
cast (in some cases by a large margin) compared
to a DCA approach.

Introduction and Background

The most prevalent forecast method in the oil &
gas industry is Decline Curve Analysis (DCA) (ref.
Arps [1945]). This technique consists of fitting a
curve to the history data in order to predict the
future performance of a well. Based on DCA the
pseudo-steady state production response of a well
follows a differential equation of the form

1dq

=% (1)

The typical time dependent solution of this equa-

tion has a hyperbolic form of ¢(t) = (H%W where
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b is called the b-factor, D is the initial nominal
decline rate, and qqy is the initial production rate.
These parameters are mainly chosen by an engi-
neering intuition and are adjusted to account for
heuristic considerations (e.g. the basin of produc-
tion, the type of driving forces, and the comple-
tion techniques used). There are many commer-
cial software packages (e.g., Aries, PHDWin, Palis-
sade, OFM, and etc.) that help to find the best
fit for any imposed constraints using DCA. Using
these software packages the process of calibrating a
good curve to the history data is typically done by
the reservoir engineer who applies a combination
of heuristics and analytical methods to produce a
plausible forecast for the production of a well. This
process is generally probabilistic and takes into ac-
count a range of uncertainties.
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Figure 1: Typical decline curve forecast - Green: Pro-
duction curve history - Black: production forecast
(Source: ERE 269, Engineering Valuation and Ap-
praisal of Assets)

As we see in Fig. 1, the prediction made using
DCA (solid black line) is a smooth curve that can-
not capture the rapid variations that usually hap-
pen in the production process (solid green line) and
is therefore subject to a certain amount of error,
nevertheless, engineers still favor this method due



to its simplicity. In this work, we propose a new
method of forecasting that increases the accuracy
of the prediction compared to DCA. This method
allows for the integration of various sources of in-
formation, starting with the history production of
the well and adapting the accuracy of the predic-
tion to the amount of available information. We
use deep learning architectures along with cluster-
ing to adaptively integrate the various sources of
information and features relevant to the forecast.

There is not a lot of related work on the use
of time series prediction for the Oil and Gas in-
dustry. Application of data driven approaches to
reservoir modeling is relatively new and coincides
with the rise of unconventional production in the
USA, combined with our limited understanding of
the physics governing the behavior of shale forma-
tions. Due to the availability of data for this type
of reservoirs, researchers and engineers started us-
ing data-driven approaches to get insights into the
production patterns. Mohaghegh et al. [2011] de-
veloped a top-down approach for modeling and his-
tory matching of shale production based on statis-
tical and pattern recognition models and applied
their approach to three shale reservoirs. Sun et al.
[2018] applied Long-Short Term Memory algorithm
(LSTM) to predict a well’s oil, water, and gas pro-
duction. Their work led to an improvement of the
production forecast in comparison with standard
DCA models. However, the tested portion of their
time series exhibits weak variations in compari-
son with the training part and it remains unclear
whether the algorithm can generalize well to com-
plex time series. Ristanto [2018] applied ANN algo-
rithms to predict the production of a well based on
pressure measurements and compared vanilla Re-
current Neural Networks (RNN), Gated Recurrent
Units (GRU), and LSTM algorithms and found
that the GRU gives the best forecast results.

This document presents the procedure of apply-
ing three main models to improve the oil produc-
tion forecast based on historical and contextual
data. The analysis is divided into three categories
as

e Clustering & Unsupervised Learning
This covers the ensemble of methods that help
with presenting, grouping, and filtering the
data-set to better frame the problem. The
main motivation behind clustering is that en-
gineers tend to tweak certain parameters de-
pending on a set of heuristic considerations

(e.g. geology, basin, type of completion, and
etc.) and clustering will allow for the integra-
tion of contextual static data into the predic-
tions.

e History Based Time Series Forecast

In this part, we use the history of oil produc-
tion (the quantity of interest) in a single time
series and forecast the future production. This
is usually the most relevant source of infor-
mation and is given a high importance in our
work. The goal is to detect and capture a set
of harmonics in the time series and use them
for forecast.

e Secondary Variables Based Sequence-to-
Sequence Regression
In this class of methods, we establish a cor-
relation between the quantity of interest (e.g.
oil production) and other time series (e.g. gas
production, water production, number of flow-
ing days, and etc.) that may influence it. This
will allow for integration of relevant contextual
temporal data into the forecast process.

Data-set Statistics

Production records of over 35,000 wells, rep-
resenting a subset of California public data, are
downloaded from the Department of Conservation,
Division of Oil, Gas, and Geothermal Resources
(DOGGR). The data is cleaned and formatted and
contains well names, operators, fields, completion
dates, geographical locations along with time series
of monthly fluids production and injection. As a
first pass, the focus of this work is on a single field
(North Belridge) with around 4000 wells where we
use two sources of data i.e. the contextual (static)
data and the historical production (time series).

e Contextual Data: Contains macro informa-
tion for each well such as geographical lo-
cation, name, type, operator, lease, geologi-
cal production zone as well as the start and
end dates of production. Contextual data is
mainly used for the clustering exercise.

e Historical Data: Contains the production
time series for each well such as the oil, water,
and gas monthly productions as well as the
number of active days per month for each well.
Historical data is used for clustering, history
based time series forecast, as well as the sec-
ondary variable based sequence-to-sequence
regression.



Clustering

In this section, our goal is to cluster the wells
using both static and time series data. The cluster-
ing process follows two steps. First we separate the
wells into macro-clusters using static data. This
requires the design of relevant features based on
an engineer’s expertise. This is achieved by taking
a subset from a global list of 15 features including
geolocation coordinates, cumulative oil and water
productions, mean, peak, and standard deviation
of the oil production, first month production, the
cumulative of the first 12 months of production,
and the production duration. The second step
consists of sub-dividing each macro-cluster into
sub-clusters using the production time series. We
use dynamic time warping (DTW) to measure the
similarity between the production time series of
each two wells and use it to group similar wells
into the same sub-cluster.

For each step, we benchmark different cluster-
ing algorithms. We test KMeans, Spectral Cluster-
ing, and Agglomerative Clustering, combined with
data normalization and dimensionality reduction
using Principal Component Analysis (PCA). For
the second step we test Global Alignment Kernel
KMeans and the Time Series KMeans algorithms.
Table 1 summarizes the different combinations of
these methods.

Table 1: Clustering Models

No. | Step 1 Algo.
1 KMeans
KMeans

‘ Step 2 Algo.

Time Series KMeans
Global Alignment Kernel KMeans
Time Series KMeans

Global Alignment Kernel KMeans

Spectral Clustering

Agglomerative Clustering | Time Series KMeans

2
3
4 | Spectral Clustering
5
6

Agglomerative Clustering | Global Alignment Kernel KMeans

Clustering Hyper-Parameters Tuning

Table 2 presents the set of hyper-parameters
used for each one of the models in Table 1. The
heuristic we define to compare the different models
is determined by plotting the time series belonging
to each sub-cluster and searching for a coherent
structure characterizing the time series belonging
to the same group, some of these coherency mea-
sures are

e Separation between High/Low amplitude of
production time series

e Separation between Short/Long production
time series

e Separation between time series that start with
a high amplitude and then collapse sharply in
contrast with a production that declines grad-
ually, this reflects inherent differences in pro-
duction conditions.

Table 2: Hyper-Parameters Tuning

Parameter ‘ Values
# Clusters Step 1 [5, 7, 10]
# Clusters Step 2 12, 3, 4]

Set of static features tested different subsets
Weight of static features | [1, 5, 10]

Clustering Results

Both model 1 and model 5 in Table 1 lead to
the best results. We present the results of model
1 composed of KMeans + Time Series KMeans al-
gorithms with 7 macro-clusters, each one decom-
posed into 2 sub-clusters. For this case we use the
following set of features: (geolocation coordinates,
cumulative oil and water productions, mean, peak,
and standard deviation of the oil production), and
unity weights. The results of the first step are pre-
sented in Fig. 2, we see that wells belonging to a
same cluster naturally regroup geographically, this
reflects the underlying geological formation char-
acteristics of each region. Fig. 3a and 3b show the
decomposition of two macro-clusters, 2 and 3, into
sub-clusters, the comparison of the top and bottom
plots of Fig. 3a shows that the time series length
is the characteristic that determines the well’s sub-
cluster, with long and short time series grouped
into different clusters. Fig. 3b shows another con-
figuration where the amplitude of the production is
the determining characteristic. These clusters can
then be used to apply different forecast models in
the time series forecasts presented in the following.

Time Series Forecasting

In this section, we illustrate forecasting of a time
series e.g. oil production using different variants of
Recurrent Neural Network (RNN) architectures.

History Based Time Series Forecast

We forecast time series of oil production using
the history of production for a single well. We use
different Recurrent Neural Network architectures,
do a hyper-parameter study, and finally compare
the best RNN model’s outcome with the Decline
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Figure 2: (a). wells clusters projected in PCA space, (b). same clusters in the physical geographical space

Curve Analysis results.
Data Pre-processing

The time series relevant to our work are usually
non-stationary and have variable trends meaning
that the statistical characteristics of the data e.g.,
frequency, variance, and mean vary in time. Sta-
tionary time series are easier to model and their
trends are usually easier to capture. Prior to train-
ing, we convert the time series into stationary data
using differencing (i.e. computing the differences
between consecutive observations). We then nor-
malize the data in the interval [—1,+1] to avoid
vanishing gradients when using RNN. Next, we
split a time series into input set X and output y us-
ing a lag time approach (i.e. output will be lagged
from the input by a few time steps). The sizes
of lags are treated as a tuning hyper-parameter to
get better accuracy. After training, we convert the
data back for error calculations.

History Based Forecast Training Model

We use many-to-one (cref. Fig. 4) recurrent neu-
ral network. A many-to-one model produces one
output value after receiving multiple input values
(an input sequence). The internal state is accumu-
lated with each input value before a final output
value is produced. We use Root Mean Squared Er-
ror (RMSE) to measure the accuracy of the forecast
during the training process. RMSE can be calcu-
lated as

RMSE =

where n is the total number of time steps in the
time series, and y? Ted, yr cal are the model predicted
and actual values of the time series at each time

step.
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Figure 4: A many-to-one sequence model, where an in-
put sequence is considered for an output through con-
nections made by RNN states

We consider three common recurrent mod-
els as (1).Deep Vanilla Recurrent Neural Net-
work (DVRNN), (2). Deep Gated Recurrent Units
(DGRU) network, and (3). Deep Long Short Term
Memory (DLSTM) network. RNNs have feedback
loops in the recurrent layer which lets them main-
tain information in memory over time. But, it
can be difficult to train standard RNNs to solve
problems that require learning long-term tempo-
ral dependencies due to vanishing gradient prob-
lems. On the other hand, LSTM uses special units
in addition to the standard units that includes
memory cells for maintaining information for long
periods of time. A set of gates is used to con-
trol when information enters the memory, when
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Figure 3: (a). Macro-cluster 2 decomposition based on the length of time series; (b). Macro-cluster 3 decomposition

based on the amplitude of time series

it gets outputted, and when it’s forgotten. GRUs
are similar to LSTMs, but use a simplified struc-
ture and have a set of gates to control the flow
of information, but they don’t use separate mem-
ory cells and have fewer gates. Before doing an
actual time series forecast we do an experiment
and compare a very simple Vanilla RNN’s (with
5 neurons and 1 layer) forecast capability with De-
cline Curve Analysis (DCA). We synthetically cre-
ate the time series by adding sine and cosine modes
to a base exponentially decaying with time signal
(i.e. ay, sin(wy,;t) + by, cos(wy,t) with ay,, by, we, be-
ing random amplitude and frequencies at each time
step t;). Then by splitting the time series into 75%,
25% split as training and test set we forecast us-
ing both the Vanilla RNN and DCA. Fig. 5 shows
the comparison of the forecast results using Vanilla
RNN and DCA for a noisy exponentially decay-
ing time series. Using Vanilla RNN improves the
RMSE by 34% which is a considerable improve-
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Figure 5: Comparison of Decline Curve Analysis v.s.
Recurrent Neural Network for oil production time series
forecast

ment compared to a naive DCA approach.
History Based Time Series Forecast Results

Table 3 shows the experiment results of an ac-
tual time series forecast using the three recurrent
architectures. We first use a one-layer Vanilla
Recurrent Neural Network (VRNN) which leads to



Table 3: RMSE values of different experiments; GRU:
Gated recurrent unit, LSTM: long short-term memory,
D.O.: with Drop-out, Reg.: with regularization

No. ‘ Experiments ‘ RMSE (%)
1 | Vanilla RNN (VRNN) 10.32
2 | Deep Vanilla RNN (DVRNN) 8.71
3 DVRNN + D.O. 8.51
4 | DVRNN + D.O. + Reg. 8.11
5 | Deep GRU (DGRU) 7.72
6 DGRU + D.O. 7.61
7 DGRU + D.O. + Reg. 7.49
8 Deep LSTM (DLSTM) 7.11
9 DLSTM + D.O. 6.87
10 | DLSTM + D.O. + Reg. 5.92

RMSE of 10.32%. We then use a Deep VRNN by
stacking multiple layers of VRNN which improves
the RMSE to 8.71%. The RMSE decreases by
using drop-out and kernel normalization down to
8.11%. In the next step, we use a Deep Gated
Recurrent Neural Network (DGRU) that helps
to capture long term dependencies in the time
series. After hyper-parameter study, a DGRU with
drop-out and kernel regularization could achieve
7.49 % RMSE. In the next step, we use Deep Long
Short Term Memory (DLSTM) network to better
capture the long term temporal dependencies, and
we could achieve the highest RMSE of 5.92 % after
careful hyper-parameter study. Table 4 shows
the details of the optimum network architecture
that have come out of the hyper-parameter study
for each type of recurrent network. As Table 4
shows for each type of network, in cases where
both drop-out and regularization are used the
best outcome in terms of RMSE is achieved,
however only using large drop-out values under
performs compared to using mixed drop-out and
regularization. All the models have been trained
using Adam optimizer and training has terminated
once the improvement in the RMSE over 30 epochs
is less than 1%-2%.

Fig. 6 shows the forecast results for the
three types of architectures used i.e. Deep VRNN,
Deep GRU, and Deep LSTM with RMSE of
8.11%, 7.49%, and 5.92% respectively. As Fig. 6a
shows Deep VRNN can predict the trend however
it undershoots the peaks and troughs with a
delay. However, Fig. 6b shows that the Deep GRU
sometimes undershoots/overshoots the peaks and
troughs. On the other hand, Deep LSTM model
in Fig. 6¢ captures both the trends and peaks and
troughs reasonably well compared to the other two

Table 4: Detailed parameter values of experiments in
table 3; column Layer sizes gives the number of neurons
in each layer(s) of a model, D.O. Coef. is the drop-out
coefficient, and Reg. Coef. is the coefficient for Lo
regularization

No. (Laf}rfgu;fiss) D.O. Coef. | Reg. Coef.
1 (15) 0 0

2 (20,15,7) 0 0

3 (20,15,7) 0.4 0

4 (20,15,7) 0.2 L5(0.03)
5 (25,10,5) 0 0

6 (25,10,5) 0.5 0

7 (25,10,5) 0.25 L»(0.01)
8 (20,15,5) 0 0

9 (20,15,5) 0.45 0

10 (20,15,5) 0.15 L2(0.02)

recurrent architectures. In Fig. 6¢ Deep LSTM
improves RMSE by up to 92% compared to DCA.
The change in trend observed at the end of the
time series amplifies the gap between RNN and
DCA and is an example of a case where large
improvements could be achieved using these deep
models.

Secondary Variables Based Sequence-to-
Sequence Regression

This third model aims at making prediction on
oil production taking into account contextual time
series data. We use sequence-to-sequence regres-
sion model as a way to correlate oil production at
a well with a set of other data measured at the same
well (gas production, water production, pressures)
but also at the field level (offset production, injec-
tion) and even at a macro-economic level (oil/gas
price, number of rigs available, financial of the op-
erating company, and etc.). For this example, we
only look at the contextual data for a given well.

Description of Sequence-to-Sequence Model

We use a sequence-to-sequence model similar to
the one shown in Fig. 7. The inputs are gas produc-
tion, water production, dates, number of flowing
days in a month, API number (related to position).
The output is Liquid cumulative production. The
overall network architecture is as following: start-
ing with an input sequence with a given dimension
(10 as an example), followed by LSTM units that
are connected to a fully connected layer and finally
connecting to a one neuron layer with a RMSE re-
sponse. The details about the size and architecture
of each part of the network is given in Table 5 sub-
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ject to a hyper-parameter study.

many to many many to many

S B

Figure 7: A many-to-many sequence model, multivari-
ate input sequences are used to predict and output

We consider time series of various lengths and
use a minibatch gradient descent with padding in
order to train the model. LSTM networks typically
input data with varying sequence lengths. When
passing data through the network, we must pad or
truncate sequences in each mini-batch to have the
specified length. To reduce the amount of padded
or discarded data when padding or truncating se-
quences, we sort our data. Figure 8 illustrates the
benefits of sorting prior to padding.

Unsorted Data

Sorted Data

0 50 100 150 200 250 0 50 100 150 200 250
Sequence Sequence

Figure 8: Padding sequences with and without sorting

We train the model on 3850 wells (testing on
350). Training loss (RMSE) is represented in
Fig. 9. We train the model on a single GPU Geo-
Force X 1080 Ti. Each epoch takes about 10s for
the hyper-parameter sets defined in Table 5.

RMSE

aaaaaaaa

Figure 9: Training (blue) loss (RMSE) for sequence-to-
sequence regression. Training occurs over 100 epochs.

We observe a good convergence behavior for each
batch and overall. We run experiments over around
1000 models. Our best model is obtained using an
ensemble of models. The hyper-parameters used

for a subset of these models are represented in ta-
ble 5.

Sequence-to-Sequence Model Results

Fig. 10 shows the comparison of modelled and
actual cumulative production for 4 wells randomly
selected within the training (Fig. 10a) and test set
(Fig. 10b). We see that they fit fairly well with
the exception of well 1957. The mean RMSE er-
ror for the training set is 63,000 while it exceeds
120,000 for the test set . The model learns quite
well and the match on some wells is nearly perfect
while it misses on others. It is interesting to ob-
serve that the model fails to capture the monotone
nature of cumulative production while the overall
magnitude seems respected. As expected, the fit
on the test set is slightly worse than for the train-
ing set. More importantly, we tested this model
on the cumulative production. The signal is hence
fairly smoothed compared to the original rate. We
will migrate to the direct rate prediction in the fu-
ture but in this work we aimed to produce accept-
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Figure 10: Examples of predicted vs actual cumulative production

Table 5: RMSE values of different experiments on
Sequence-to-Sequence Regression model

Hidden units ‘ Dropout ‘ FC units ‘ Learning rate ‘ L2-reg ‘ RMSE

140 0.5 72 0.008 0.0005 21
100 0.5 2 0.008 0.0004 28
200 0.5 72 0.008 0.0005 31
200 0.4 76 0.008 0.0005 38

able results on the cumulative. The distribution of
the RMSE over the whole test set is presented in
Fig. 11.
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Figure 11: Distribution of RMSE over test set for
Sequence-to-Sequence regression model

We present the results of sequence-to-sequence
model’s hyper-parameter tuning in Table 5. These
results are slightly worse than the baseline set by
the classical DCA approach (30% RMSE). How-
ever, none of the historical data is used to com-
pute them. We use secondary metrics only to com-

pute the liquid production. This exercise allows to
capture long term effects of production (such as a
slow down or an increase). This is what we see in
the cumulative production trends. It is a necessary
complement to the prediction based purely on his-
torical production presented in an earlier part in
this work as that approach can capture short term
variations very well but cannot make predictions in
the long term.

Future Works

An advantage of DCA is that it provides a
long term estimate of production that is inaccu-
rate but very consistent. It is a model with high
bias and very low variance. LSTM models tend
to have very high variance but they fail to iden-
tify long term trends in predictions unless the pre-
dictions constantly get adjusted. This approach,
although valuable for short term predictions, fails
to provide a holistic substitute for DCA which
remains for simplicity and robustness reason the
most widely used approach in the industry. In the
future steps, we will improve the individual models
we have hereby presented and merge them in order
to produce a holistic forecast. A promising ap-
proach would be to use encoder-decoder Sequence-
to-Sequence models where all the contextual data
(static and dynamic) would be integrated into the
encoder and the actual prediction would be made
based on the encoding rather than the actual data.
This would allow a denser representation of the
data and help with comparing wells with each
other.
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